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Abstract: A Ku-band tunable oscillator operated at and below 77 K is described. The oscillator is based on
two separate technologies: a 0.25 µm GaAs pseudomorphic high electron mobility transistor (PHEMT)
circuit optimized for cryogenic operation, and a gold microstrip ring resonator patterned on a thin
ferroelectric (SrTiO3) film which was laser ablated onto a LaAlO3 substrate. A tuning range of up to 3%
of the center frequency was achieved by applying  dc bias between the ring resonator and ground plane.
To the best of our knowledge, this is the first tunable oscillator based on a thin film ferroelectric structure
demonstrated in the microwave frequency range. The design methodology of the oscillator and the
performance characteristics of the tunable resonator are described.

1. INTRODUCTION

A key performance parameter of modern digital communication systems is phase noise, which
can be regarded as short term signal instability. Phase noise is introduced into a system primarily
by the local oscillator (LO) used in the receiver. The state-of-the-art in phase noise performance
is represented by crystal sources which are multiplied up to the desired signal frequency. Since
phase noise scales as n2, where n is the multiplication factor, crystal stabilized LOs are generally
restricted to frequencies below several GHz.  Dielectric resonator oscillators  (DROs) are com-
mercially available up to at least 20 GHz. However, DROs do not lend themselves to electronic
tuning or frequency locking. Further, the DRO resonator fabrication must be done independently
of the oscillator circuit and its three-dimensional geometry impedes the fast, high volume pro-
duction of the optimized circuit. Similarly, cavity stabilized oscillators offer excellent perfor-
mance  characteristics but are bulky and expensive. There is also rapidly growing interest in
voltage controlled oscillators (VCOs) at Ku-band and higher frequencies [1-3]. The purpose of
this work is to explore an entirely new VCO concept involving several different technologies. It
has been shown experimentally that the use of a superconducting resonator, instead of gold, can
improve phase noise by as much as 20 dB at X-band because of lower surface resistance [4].
Nevertheless, knowledge of the behavior of solid state devices for microwave applications at
cryogenic temperatures, especially down-converters, is incomplete. The implications of phenom-
enon such as I/V collapse, carrier freeze-out, 1/f noise, etc. are still being studied [5,6]. This paper
reports on the design and performance of a prototype cryogenic ferroelectric/PHEMT oscillator using
a metallic rather than a superconducting resonator at this time.
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2. TUNABLE RING RESONATOR

A ring resonator fabricated from a multilayer structure comprised of an evaporated Au film with
nominal thickness of 2 µm, an evaporated 15 nm thick titanium adhesion layer, and a 2 µm
SrTiO

3
 film deposited by laser ablation onto a (100) LaAlO

3
 substrate (254 µm thick), is used as

the stabilizing element in the VCO. A standard lift-off etching process was used to pattern the
circuit. The ring resonator, which is three guide wavelengths in circumference at the primary
operating frequency, is shown in the left half of Fig. 1. The characteristic impedance of the
microstrip ring was 25 Ω. This impedance was carefully chosen and nearly optimal in the sense
of providing minimum conductor loss (to improve Q) while avoiding higher order mode prob-
lems. The ratio of microstrip width to mean radius of the ring was 0.24, and the dominant (quasi-
TEM) mode was TM310 (no azimuthal magnetic field component) [7]. The estimated maximum
unloaded Q was about 500 compared to less than 200 for a 50 Ω ring. These values compare

Figure 1.—Layout of the complete VCO.
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favorably to conventional varactor-loaded rings [8]. For comparison, the resonator used in [5],
which was kept at room temperature but coupled to a cryogenic PHEMT, had a loaded Q of 160.
The outer circle represents the location of the SrTiO3 after selective etching with 7% hydrofluoric
acid. The ring is tuned by applying a dc electric field to the SrTiO3 film. Bias is applied via a
25 µm diameter Au wire bonded by thermal-compression near the 12:00 position on the ring (i.e.
a virtual short circuit position). It has been shown that the dielectric constant (εr) of the SrTiO3
film varies nonlinearly from 300 at 295 K to as much as 5000 below 77 K [9]. At cryogenic
temperatures εr can be made to approach the room temperature value with the dc bias. That is,
tuning to lower (higher) resonant frequencies is achieved by decreasing (increasing) the magni-
tude of the dc bias applied to the ring. Frequency shifts of 12% at 16 GHz have been measured at
77 K with a bias of 450 V [10]. Figure 2 shows the magnitude of the insertion loss as a function
of bias. The resonator was characterized using the test fixture and techniques described in the
next section. The measurements are referred to the edge (input) of the 1 cm long circuit. Note that
the sharp resonances are maintained by controlling the potential of the microstrip line as well as
the ring, relative to the back plane at dc ground. That is, the coupling coefficient of the side
coupled resonator can be controlled as well as the resonant frequency in order to operate at an
optimal point or “sweet spot.” Resonance splitting, which often plagues side-coupled resonators,
was not a problem [11].
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3.  PSEUDOMORPHIC HEMT CHARACTERIZATION

An Avantek/HP 0.25 µm gate length ATF-35076 PHEMT, housed in a ceramic microstrip pack-
age, was chosen as the active device because of its premium noise figure and associated gain and
low cost. For the purpose of obtaining the scattering (S-) parameters of the PHEMT, the device
was attached to a 0.5 mm thick alumina (Al2O3) coplanar waveguide carrier, which was inserted
into a modified Design Techniques fixture. The fixture was connected to a HP 8510C vector
network analyzer with semi-rigid coaxial cables. A room temperature calibration using “short,
open, and through” standards first established reference planes a few mm from the carrier center.
Reference planes were then shifted to the device ports using an offset short and dialing in an
appropriate port extension with the 8510C. The fixture, carrier, and PHEMT were cooled to 77 K
using liquid nitrogen. The magnitude of S21, S11 and S22 are shown in figure 3 for a drain (Vd)
and gate (Vg) voltage of 2.1 and –0.2 V, respectively. The corresponding drain current (Id) was
about 13 mA. A design frequency of 16.7 GHz was chosen so as to fall within the performance
range of the ring resonator (see Fig. 2). The S-parameter magnitudes and phase angles were:  S11
= 0.462, 141.0°, S12 = 0.067, –105.0°, S21= 2.28, –81.4°, S22= 0.22, 107.5°. Several devices were
measured in this way on different occasions with consistent results.
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4.  VOLTAGE CONTROLLED OSCILLATOR DESIGN

The PHEMT portion of the VCO was constructed on 0.25 mm thick Al2O3 and is shown in the
right half of Fig. 1. The circuit pattern was defined using a standard additive, as opposed to etch-
back, Au electroplating process. The PHEMT leads were carefully trimmed so that it fit snugly
into the region indicated. Since the PHEMT was unconditionally stable as tested, an inductance
was inserted between the source and ground. An iterative computer routine was used to vary the
source impedance (ZS) to maximize the negative resistance of the PHEMT while preserving
enough loop gain. Specifically, with a ZS of j35 Ω, the new S-parameters became: S11 = 1.59,
94.3°, S12 = 0.626, 3.7°, S22 = 1.223, 92.4°, S21 = 2.197, –135.8°. The resulting stability factor
(K) was –0.499 and the magnitude of (S11S22-S12S21) = 1.284. The source inductance was
realized by inserting a section of 50 Ω microstrip 1.08 mm long at each source connection. The
normalized impedance (ZR) of the ring circuit at the design frequency was 0.639-j0.228 Ω, which
includes the effects of the 5 mm section of microstrip intervening between the gate terminal and
the bisector of the ring. This impedance corresponds to the second resonance from the left in
Fig. 2. The bias on the ring was 23 V and the bias on the microstrip was 0 V. With this biasing
scheme there was no need to be concerned with floating the PHEMT voltages with respect to
ground since the gate and ring circuit could be directly dc coupled. With the ring resonator
circuit connected to the gate of the PHEMT as shown in Fig. 1, the impedance looking into the
drain was –24.9 + j47.7 or Γ = 1.6. The drain matching circuit shown in Fig. 1 provided a ZL =
8.3 – j47.7 as is customarily done to ensure oscillation [12]. The VCO operates below 77 K, near
the dielectric constant maximum of the SrTiO3, where the noise figure of the PHEMT and the
surface resistance of the Au resonator are minimized. A particular operating temperature of 43 K
was chosen to provide the maximum field induced tunability of the SrTiO3. For testing purposes,
both circuits were attached to a brass fixture with conductive epoxy. The fixture was inserted into
the vacuum can of a closed-cycle He gas refrigerator equipped with semi-rigid coaxial cables.
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Figure 4.—VCO signals as measured on an HP 8566B Spectrum Analyzer at 43 K with Vd = 2.1 V, Vg = –0.2 V, Id = 13.9 mA
   and Vring = 38 V. The scale on (a) is 2 to 22 GHz, and (b) shows a 500 MHz span with oscillation frequency at 16.696 MHz.

(a) (b)

5.  RESULTS AND CONCLUSIONS

Changing the bias on the ring from 0 to 38 V varied the oscillator frequency by about 100 MHz
around the center frequency. Figure 4(a) shows the spectrum of the oscillator over a very broad
bandwidth. No spurs or sub-harmonics were observed. Figure 4(b) shows a typical signal for the
LO at a ring voltage of 38 V. By increasing the ring voltage to 250 V, the tuning range was ex-
tended over 500 MHz.

In conclusion, a novel tunable microwave ring resonator at 16.7 GHz has been developed.
It offers potential advantages over traditional varactor-loaded rings and DROs. To the best of our
knowledge, this is the first time that a tunable oscillator based on a thin film ferroelectric struc-
ture has been demonstrated at such a high frequency. A successful design approach for such a
cryogenic oscillator has been developed. In the near future, the Au ring will be replaced with a
YBa2Cu3O7-δ  ring and phase noise measurements will be made to compare performance. The
merits of this VCO reside in its high performance potential, small size, simplicity of implementa-
tion, MMIC compatibility and its potential for low cost, high volume production.
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